Unit Vectors (covered in \$12.2) vector:

$$
\vec{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right) \in \mathbb{R}^{n}
$$

length of $\vec{v}\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$
(P ythagorem Thu)
Unit Vators ave
Vectors with wit length (length $=1$) $\vec{v} \in \mathbb{R}^{n}$ can be normalized to
a unit vector $\frac{\vec{v}}{\|\vec{v}\|} \cdot\left(\left\|\frac{\vec{v}}{\|\vec{v}\|}\right\|=\frac{\|\vec{v}\|}{\|\vec{v}\|}=1\right)$
$\binom{$ unit vector can be understand as direction, }{ noumatiod vector is the direction of argal vector }
Standard Unit Vectors:

$$
\mathbb{R}^{2}: \quad \vec{i}=(1,0), \vec{j}=(0,1) .
$$

$\mathbb{R}^{3}: \vec{i}=(1,0,0), \vec{j}=(0,1,0)$,

$$
\vec{k}=(0,0,1) .
$$

Eurry Vector $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$
can be written as $v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$, same for \mathbb{R}^{2}
$\$ 12.2$
56. Unit vectors in the plane Show that a unit vector in the plane can be expressed as $\mathbf{u}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}$, obtained by rotating i through an angle θ in the counterclockwise direction. Explain why this form gives every unit vector in the plane.

$$
\begin{aligned}
& \vec{u}=\left(u_{1}, u_{2}\right) \vec{u}: u_{n} t \\
& \text { Then vectur } \\
& u_{1}=\|\vec{u}\| \cos \theta \\
&=\cos \theta \\
& u_{1}=\|\vec{u}\| \sin \theta \\
&=\sin \theta \\
& \therefore \vec{u}=\cos \theta \xrightarrow{u_{1}}+\sin \theta \vec{j}
\end{aligned}
$$

Counter Cloclcwise Direction:

Dot Product, Projection (Covered in §12.3)
Dot Product: $\vec{u} \cdot \vec{v}:=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}$
Remade: $\vec{u} \cdot \vec{u}=\|\vec{u}\|^{2}$
The angle between \vec{u} and \vec{v} :

$$
\theta=\cos ^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right)
$$

(pf: using cosine formulary:

$$
\left(\|\vec{v}-\vec{u}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\|\|\vec{v}\| \cos \theta\right)
$$

Remark: $\vec{u} \cdot \vec{v}=0 \Leftrightarrow \vec{u}, \vec{v}$ are orthogonal
Projection of \vec{u} onto \vec{v} :
a vector $\vec{\omega}$ has direction same as \vec{v}, and length $\|\vec{u}\| \cos \theta$

$$
\begin{aligned}
\stackrel{\rightharpoonup}{w} & =\underbrace{\|\vec{u}\| \cos \theta}_{\text {length }} \cdot \underbrace{\frac{\vec{v}}{\|\vec{l}\|}}_{\text {direction }} \\
& =\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|} \cdot \frac{\vec{v}}{\|\vec{v}\|}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^{2}} \vec{v}
\end{aligned}
$$

We con also write $\vec{w}=\operatorname{proj}_{\vec{v}} \vec{u}$
$\$ 12.3$
8. $\mathbf{v}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right\rangle, \quad \mathbf{u}=\left\langle\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{3}}\right\rangle$
a. $\mathbf{v} \cdot \mathbf{u},|\mathbf{v}|,|\mathbf{u}|$
b. the cosine of the angle between \mathbf{v} and \mathbf{u}
c. the scalar component of \mathbf{u} in the direction of \mathbf{v}
d. the vector $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

(a).

$$
\begin{aligned}
\vec{v} \cdot \vec{u} & =\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}} \cdot\left(-\frac{1}{\sqrt{3}}\right) \\
& =\frac{1}{2}-\frac{1}{3}=\frac{1}{6} \\
\|\vec{u}\| & =\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{5}{6}} \\
\|\vec{u}\| & =\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{5}{6}}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \cos \theta=\frac{\vec{v} \cdot \stackrel{\rightharpoonup}{u}}{\|\vec{v}\| \cdot\|\vec{u}\|} \\
& =\frac{1 / 6}{\sqrt{5 / 6} \sqrt{5 / 6}}=\frac{1}{5}
\end{aligned}
$$

(c). Scalar component

$$
\begin{aligned}
& =\text { length of projection } \\
& =11 \cdots 11 \cos \theta \\
& =\sqrt{\frac{5}{6}} \cdot \frac{1}{5}=\frac{1}{\sqrt{30}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& P_{\operatorname{moj}}^{u} \vec{u} \\
= & \|\vec{u}\| \cos \theta \cdot \frac{\vec{v}}{\|\vec{v}\|} \\
= & \frac{1}{\sqrt{30}} \cdot \frac{\sqrt{6}}{\sqrt{5}} \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right) \\
= & \left(\frac{1}{5 \sqrt{2}}, \frac{1}{5 \sqrt{3}}\right)
\end{aligned}
$$

15. Direction angles and direction cosines The direction angles α, β, and γ of a vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ are defined as follows: α is the angle between \mathbf{v} and the positive x-axis $(0 \leq \alpha \leq \pi)$ β is the angle between \mathbf{v} and the positive y-axis $(0 \leq \beta \leq \pi)$ γ is the angle between \mathbf{v} and the positive z-axis $(0 \leq \gamma \leq \pi)$.
a. Show that

$$
\cos \alpha=\frac{a}{|\mathbf{v}|}, \quad \cos \beta=\frac{b}{|\mathbf{v}|}, \quad \cos \gamma=\frac{c}{|\mathbf{v}|},
$$

and $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. These cosines are called the direction cosines of \mathbf{v}.
b. Unit vectors are built from direction cosines Show that if $\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is a unit vector, then a, b, and c are the direction cosines of \mathbf{v}.

$$
\text { (a). } \begin{aligned}
& \cos \alpha=\frac{\vec{i} \cdot \vec{v}}{\|\vec{i}\|\|\vec{i}\|} \\
= & \frac{(\vec{i} \cdot a \vec{i})+(\vec{i} \cdot b \vec{j})+(\vec{i} \cdot(\vec{k})}{\|\vec{v}\|} \\
= & \frac{a+0+0}{\|\vec{i}\|}=\frac{a}{\|\vec{v}\|}
\end{aligned}
$$

Similar for $\cos \beta$ and $\cos \gamma$.

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma \\
= & \frac{a^{2}+b^{2}+c^{2}}{\|\vec{v}\|^{2}}=1 .
\end{aligned}
$$

(b). If \vec{u} is unit, then $\cos \alpha=\frac{a}{\|i\|}=a$

$$
\cos \beta=\frac{b}{\|\overrightarrow{\|}\|}=b, \cos \gamma=\frac{c}{\| \tau| |}=c
$$

27. Orthogonal unit vectors If \mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal unit vectors and $\mathbf{v}=a \mathbf{u}_{1}+b \mathbf{u}_{2}$, find $\mathbf{v} \cdot \mathbf{u}_{1}$.

a \vec{u}_{1} is projection of \vec{v} onto \vec{u}_{1} :

$$
\begin{aligned}
a \vec{u}_{1} & =\frac{\vec{v} \cdot \vec{n}_{1}}{\left\|\vec{u}_{1}\right\|^{2}} \vec{u}_{1} \\
& =\left(\vec{v} \cdot \overrightarrow{u_{1}}\right) \overrightarrow{u_{1}}
\end{aligned}
$$

Or
Recall: \vec{u}_{1}, \vec{u}_{2} are orthogonal if $\vec{u}_{1} \cdot \vec{u}_{2}=0$.

$$
\begin{aligned}
& \vec{v} \cdot \vec{u}_{1} \\
= & \left(a \vec{u}_{1}+b \vec{u}_{2}\right) \cdot \vec{u}_{1} \\
= & a \vec{u}_{1} \cdot \vec{u}_{1}+b \vec{u}_{2} \cdot \vec{u}_{1} \\
= & a
\end{aligned}
$$

28. Cancellation in dot products In real-number multiplication, if $u v_{1}=u v_{2}$ and $u \neq 0$, we can cancel the u and conclude that $v_{1}=v_{2}$. Does the same rule hold for the dot product? That is, if $\mathbf{u} \cdot \mathbf{v}_{1}=\mathbf{u} \cdot \mathbf{v}_{2}$ and $\mathbf{u} \neq \mathbf{0}$, can you conclude that $\mathbf{v}_{1}=\mathbf{v}_{2}$? Give reasons for your answer.

Recall the meaning of dot product: length of pajection onto a (unit) vector.

Under the same setting with prevails question (\vec{u}_{1}, \vec{u}_{2} are orthogonal unit vectors),

Both \vec{v}_{1} and \vec{v}_{2} have the same projection By previous question,

$$
\vec{u}_{1} \cdot \vec{v}_{1}=\vec{u}_{2} \cdot \vec{v}_{2} \text { but } \quad \vec{v}_{1} \neq \vec{v}_{2}
$$

Or counter Example:
Let $u=(1,0), v_{1}=(1,1)$

$$
\begin{aligned}
& \quad v_{2}=(1,2) \\
& \vec{u} \cdot \vec{v}_{1}=1=\vec{u} \cdot \vec{v}_{2} . \\
& \text { but } \vec{v}_{1} \neq \vec{v}_{2} .
\end{aligned}
$$

